
April 30, 2008

Chapter 6

N-grams; CFG preview

1

Overview

• N-gram review

• Leftovers: Witten-Bell, hapax legomena

• Backoff

• Entropy and perplexity

• Factored language models

• CFG preview (if time)

2

N-gram models: Probabilities of sequences of

words

• Ideally: Probability of word N, given the presence of
words 1 through N-1.

• Approximation: Probability of word N depends only on

the last M words.

• Considers only word sequence and not other structure

• We estimate probabilities by observing frequencies

• Data sparsity: zero frequency does not entail zero

probability

Address this with smoothing and backoff

3

Estimating bigram probabilities

• Count bigram occurrences in some corpus, and divide by

the bigram frequencies of the first word.

P (wn | wn−1) = C(wn−1wn)
C(wn−1)

• Maximum Likelihood Estimation (MLE): Estimates

‘true’ probabilities as those that make the training set

most likely (but not necessarily any other corpus)

4

Hapax legomena

• Singular: hapax legomenon

• OED: A word or form of which only one instance is

recorded in a literature or an author.

• From Greek for “thing once said”

5

Witten-Bell Discounting (1/2)

• The probability for zero frequency N-grams is modeled

as the probabiilty of seeing an N-gram for the first time.

• The proportion of N-gram tokens that are first

occurrences is T (seen types) divided by N (seen tokens).

• The total probability mass to redistribute to unseen

N-grams is T/(N+T).

Demoninator is one event for each token plus one

event for each new type

MLE of a new event occurring

6

Witten-Bell Discounting (2/2)

• We could divide this redistributed probability mass

equally among unseen N-grams.

Z = number of unseen N gram types

P ∗

i
(unseen) = T/(Z(N + T))

P ∗

1 (seen) = Count(i)/(N + T)

• More common: Do this on a per-history (prefix) basis

T = number of seen types with a given history

(prefix)

Z = number of unseen types with a given history

(prefix)

7

Backoff

• If we have no information about the frequency of an

N-gram, we might still have information about its

component N-1 grams.

P (wi | wi−2, wi−1) ≈ P (wi | wi−1)

if Count(wi−2, wi−1, wi) = 0

• But this adds probability mass

• We must discount the probabilities as well, and spread

the left-over probability mass to the lower-order N-grams

we back off to.

8

Backoff with Discounting

• Use your preferred discounting scheme to get new p* for

the full-length N-grams

• On an (N-1-gram) prefix-by-prefix basis, redistribute the

left-over probability mass to lower-order N-grams

• Suppose we want to get a probability forseven dogs

bark, which does not appear in the training set.

• Find the probability mass left over from discounting

seven dogs X

• Find what share of that to assign todogs bark

9

Backoff with Discounting

P (wi | wi−2, wi−1) if C(wi−2, wi−1, wi) > 0

P̂ (wi | wi−2, wi−1) = α1P (wi | wi−1) if C(wi−2, wi−1, wi) > 0

andC(wi−1, wi) > 0

α2P (wi) otherwise

10

Deleted Interpolation

• We can also make use of lower-order N-gram

probabilities even if the higher-order counts aren’t zero.

• Weight the probabilities from the N-gram, the N-1-gram

etc, with weights that sum to 1.

• Train weights from a held-out set of data (dev set)

Why?

• Train weights on a prefix-by-prefix basis

11

Random Variables

• Random Variable: A function that maps events onto

numbers

• We might have a random variableX, which ranges over

the results of flipping a coint, and maps “heads” to 1 and

“tails” to 0.

• This is a convenient way to talk about the set of

possibilities.

• A model assigns a probability to each value ofX

• Notational shortcutp(x) = P (X = x)

12

Entropy (1/4)

• A measure of the information of a probability

distribution (in bits): How surprising is each event?

H(X) = −
∑

x

p(x)log2p(x)

• The number of bits, on average, needed to encode a

value of X

• The entropy of a fair eight-sided die is

−(8 × .125 × log .125) = − log .125 = 3bits

13

Entropy (2/4)

• The entropy of an unfair die with the distribution

{1
2
, 1

4
, 1

8
, 1

16
, 1

64
, 1

64
, 1

64
, 1

64
}

is

−1
2
log 1

2
− 1

4
log 1

4
− 1

8
log 1

8
− 1

16
log 1

16
− 1

64
log 1

64
−

1
64

log 1
64

− 1
64

log 1
64

− 1
64

log 1
64

= 2bits

• Why does the fair die have higher entropy?

14

Entropy (3/4)

• In general, smooth distributions have higher entropy than

lumpy ones

• Pointwise entropy: How surprised our model is at seeing

the next word in a sequence =− log m(w|h)

• The average of this for a long sequence of words,

generated according to the probability distributionp is

the cross-entropy ofm andp, written asH(p,m)

15

Entropy (4/4)

• Better models have lower cross-entropy

• H(p,m) is an upper bound onH(p) (H(p) ≤ H(p,m))

• You don’t need to knowp to compare the entropy of

differentm!

You just need some data generated byp.

16

Perplexity

• Models are generally evaluated usingperplexity rather

than cross-entropy.

• Preplexity= 2H

• A measure of ‘surprise’: on average, we are as surprised

as we would be if we had to choose between2H

possibilities.

• Better models have lower perplexity

17

Interim summary

• Backoff is a technique for using lower-order N-grams to

fill in when the higher-order ones are unattested

• To keep things summing to 1, backoff is combined with

discounting

• Entropy is a measure of the amount of information

contained in a signal

• Cross-entropy allows us to compare models on how well

they approximate the “true” probability distribution

• In comparing models, always use held-out data

18

N-grams and typological variation

• English is likely to be more n-gram friendly than average

Relatively fixed word order

Relatively simple morphology (low

lemma:wordform ratio)

• Alternatives (for English and other languages)

Dependency n-grams

Factored language models (Bilmes & Kirchhoff

2003)

19

Overview

• N-gram review

• Leftovers: Witten-Bell, hapax legomena

• Backoff

• Entropy and perplexity

• Factored language models

• CFG preview (if time)

20

