April 30, 2008 Chapter 6 N-grams; CFG preview

1

Overview

- N-gram review
- Leftovers: Witten-Bell, hapax legomena
- Backoff
- Entropy and perplexity
- Factored language models
- CFG preview (if time)

N-gram models: Probabilities of sequences of words

- Ideally: Probability of word N, given the presence of words 1 through N-1.
- Approximation: Probability of word N depends only on the last M words.
- Considers only word sequence and not other structure
- We *estimate* probabilities by observing frequencies
- Data sparsity: zero frequency does not entail zero probability

Address this with smoothing and backoff

Estimating bigram probabilities

 Count bigram occurrences in some corpus, and divide by the bigram frequencies of the first word.

 $P(w_n \mid w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$

 Maximum Likelihood Estimation (MLE): Estimates
'true' probabilities as those that make the training set most likely (but not necessarily any other corpus)

Hapax legomena

- Singular: hapax legomenon
- OED: A word or form of which only one instance is recorded in a literature or an author.
- From Greek for "thing once said"

Witten-Bell Discounting (1/2)

- The probability for zero frequency N-grams is modeled as the probability of seeing an N-gram for the first time.
- The proportion of N-gram tokens that are first occurrences is T (seen types) divided by N (seen tokens).
- The total probability mass to redistribute to unseen N-grams is T/(N+T).

Demoninator is one event for each token plus one event for each new type

MLE of a new event occurring

Witten-Bell Discounting (2/2)

• We could divide this redistributed probability mass equally among unseen N-grams.

Z = number of unseen N gram types $P_i^*(unseen) = T/(Z(N+T))$ $P_1^*(seen) = \text{Count}(i)/(N+T)$

• More common: Do this on a per-history (prefix) basis

T = number of seen types with a given history (prefix)

Z = number of unseen types with a given history (prefix)

Backoff

• If we have no information about the frequency of an N-gram, we might still have information about its component N-1 grams.

$$P(w_i \mid w_{i-2}, w_{i-1}) \approx P(w_i \mid w_{i-1})$$

if $Count(w_{i-2}, w_{i-1}, w_i) = 0$

- But this adds probability mass
- We must discount the probabilities as well, and spread the left-over probability mass to the lower-order N-grams we back off to.

Backoff with Discounting

- Use your preferred discounting scheme to get new p* for the full-length N-grams
- On an (N-1-gram) prefix-by-prefix basis, redistribute the left-over probability mass to lower-order N-grams
- Suppose we want to get a probability for *seven dogs bark*, which does not appear in the training set.
- Find the probability mass left over from discounting *seven dogs X*
- Find what share of that to assign to *dogs bark*

Backoff with Discounting

 $P(w_{i} | w_{i-2}, w_{i-1}) \quad \text{if } C(w_{i-2}, w_{i-1}, w_{i}) > 0$ $\hat{P}(w_{i} | w_{i-2}, w_{i-1}) \quad = \quad \alpha_{1} P(w_{i} | w_{i-1}) \quad \text{if } C(w_{i-2}, w_{i-1}, w_{i}) > 0$ $\text{and } C(w_{i-1}, w_{i}) > 0$ $\alpha_{2} P(w_{i}) \quad \text{otherwise}$

Deleted Interpolation

- We can also make use of lower-order N-gram probabilities even if the higher-order counts aren't zero.
- Weight the probabilities from the N-gram, the N-1-gram etc, with weights that sum to 1.
- Train weights from a held-out set of data (dev set) Why?
- Train weights on a prefix-by-prefix basis

Random Variables

- Random Variable: A function that maps events onto numbers
- We might have a random variable X, which ranges over the results of flipping a coint, and maps "heads" to 1 and "tails" to 0.
- This is a convenient way to talk about the set of possibilities.
- A model assigns a probability to each value of X
- Notational shortcut p(x) = P(X = x)

Entropy (1/4)

- A measure of the information of a probability distribution (in bits): How surprising is each event? $H(X) = -\sum_{x} p(x) \log_2 p(x)$
- The number of bits, on average, needed to encode a value of X
- The entropy of a fair eight-sided die is

 $-(8 \times .125 \times \log .125) = -\log .125 = 3$ bits

Entropy (2/4)

• The entropy of an unfair die with the distribution

$$\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\}$$

is
$$-\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{16}\log\frac{1}{16} - \frac{1}{64}\log\frac{1}{64} - \frac{1}{6$$

• Why does the fair die have higher entropy?

Entropy (*3*/4)

- In general, smooth distributions have higher entropy than lumpy ones
- Pointwise entropy: How surprised our model is at seeing the next word in a sequence $= -\log m(w|h)$
- The average of this for a long sequence of words, generated according to the probability distribution p is the cross-entropy of m and p, written as H(p,m)

Entropy (4/4)

- Better models have lower cross-entropy
- H(p,m) is an upper bound on H(p) $(H(p) \le H(p,m))$
- You don't need to know p to compare the entropy of different m!

You just need some data generated by p.

Perplexity

- Models are generally evaluated using *perplexity* rather than cross-entropy.
- Preplexity $= 2^H$
- A measure of 'surprise': on average, we are as surprised as we would be if we had to choose between 2^H possibilities.
- Better models have lower perplexity

Interim summary

- Backoff is a technique for using lower-order N-grams to fill in when the higher-order ones are unattested
- To keep things summing to 1, backoff is combined with discounting
- Entropy is a measure of the amount of information contained in a signal
- Cross-entropy allows us to compare models on how well they approximate the "true" probability distribution
- In comparing models, always use held-out data

N-grams and typological variation

- English is likely to be more n-gram friendly than average Relatively fixed word order Relatively simple morphology (low lemma:wordform ratio)
- Alternatives (for English and other languages)

Dependency n-grams

Factored language models (Bilmes & Kirchhoff 2003)

Overview

- N-gram review
- Leftovers: Witten-Bell, hapax legomena
- Backoff
- Entropy and perplexity
- Factored language models
- CFG preview (if time)