
Ling 555 — Programming for
Linguists

More unix basics & Regular Expressions

Robert Albert Felty

Speech Research Laboratory
Indiana University

Sep. 08, 2008



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Network tools
ssh secure remote login to another computer
sftp secure file transfer to another computer

(interactive)
scp secure file transfer to another computer

(non-interactive)
rsync extremely powerful and smart file transfer

(works both for local and remote
computers — non-interactive)

3



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Process management
ps Display which processes are running

(non-interactive)
top Display which processes are running

(interactive)
kill Kill (abort) a process using the process ID

killall Kill (abort) a process using the process name
nice Set the cpu priority for a process

ionice Set the disk usage priority for a process
nohup Keep running after logging out

& Run process in the background

Example
Run a long process in the background and don’t hog
system resources
nohup ionice -c2 -n7 nice -n 19 prog --progOpts &

4



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Archiving and compressing
zip Create a zip file

unzip Extract contents from a zip file
gzip Compress a file with GNU zip

gunzip Decompress a file with GNU zip
bzip2 Compress a file with bzip compression (makes

smaller files)
bunzip2 Decompress a file with bzip

tar Create and extract tar archives
Common uses:
create tar -czvf file.tar.gz directory

extract tar -xzvf file.tar.gz

5



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Calculator
bc Basic interactive calculator. Usually should

invoke with the -l option
dc Reverse polish style interactive calculator

Example
Add the first line of one file and the last of another
echo "`head -n1 numbers.txt` + `tail -n1

numbers2.txt`" |bc -l

Example
Add the first 10 lines of a file (which contains one
number per line)
echo "`head numbers.txt` + p" |dc

6



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Environment variables

Definition
Most UNIX programs pay attention to environment
variables, such as the language, timezone, and PATH.
To see all currently set variables, type:
export

Example
To change a variable, do:
export PATH="/home/robfelty/bin:${PATH}"

7



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Custom variables and aliases

Example
You can also create and use your own variables. If you
frequently connect to the server
speech.psych.indiana.edu, you can store that in a
variable, e.g.
speech=speech.psych.indiana.edu

ssh $speech

Example
If you always want to have color listings, you can create
an alias
alias ls='ls --color'

8



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

.rc files

Definition
Many UNIX programs, including the shell (we have
been using the BASH shell), have files where one can
store customizations between sessions.

Common .rc files
.bashrc
.vimrc
.inputrc

Every time you open a new terminal, the .bashrc file is
read.

9



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Basic shell scripting

Definition
A shell script uses the exact same syntax as the
command line shell you use (we have been using
BASH). In this way, you can group commands together,
to reduce work.

10



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Basic shell scripting

Example
#!/bin/bash

# this script strips off any file extension from the

argument, and runs the result through latex,

bibtex, latex twice, dvips, ps2pdf, and then

opens it with evince

SEED=`echo $1 | cut -f1 -d"."`

latex -interaction=batchmode $SEED && bibtex $SEED &&

latex -interaction=batchmode $SEED && latex

-interaction=batchmode $SEED && dvips -t letter

-Ppdf $SEED.dvi -o $SEED.ps && ps2pdf $SEED.ps &&

evince $SEED.pdf &

How might one improve this script?
11



1 #!/bin/bash

2 # this script syncs my school computer onto an external hard disk

using rsync

3
4 # define a few constants

5 TARGET='/media/disk'

6 OPTIONS=' -avz --delete-after '

7 UMOUNT='FALSE'

8
9 echo "Executing incremental backup script"

10
11 # if /media/disk does not exist, create it, then mount the disk, and

mark for unmounting

12 if [ ! -d /media/disk ]; then

13 echo "creating /media/disk and mounting"

14 UMOUNT='TRUE'

15 mkdir /media/disk

16 mount /dev/sdd1 /media/disk

17 fi



18 # first backup a few directories from the external disk to the local

hard disk

19 ionice -c2 nice -n 19 rsync -avzu --exclude='.svn*'

--exclude="*.swp"

${TARGET}/home/robfelty/{adam,RobsDocs,pics,R,matlab}

/home/robfelty

20 ionice -c2 nice -n 19 rsync -avzu --exclude='.svn*'

--exclude="*.swp" ${TARGET}/var/celex /var

21
22 #next backup everything from the local disk to the external

23 ionice -c2 nice -n 19 rsync $OPTIONS /selinux /bin /etc /home /lib

/lib64 /misc /opt /root /sbin /usr /var ${TARGET}/ >

~/fedibbletyBackupLog.txt

24
25 if [[ $UMOUNT = 'TRUE' ]]; then

26 echo "unmounting and removing /media/disk"

27 umount /media/disk

28 rmdir /media/disk

29 fi



unix basics
network tools

processes

archiving

calculator

customization

basic scripting

line endings

editors

regex/glob

Practice

Line Endings

Definition
Mac, UNIX, and DOS (Windows) use different line
ending characters, which can cause lots of problems

\r Mac
\n UNIX

\r\n DOS

Converting between Mac, DOS, and UNIX
Most Linux distros ship with the programs unix2dos
etc. Mac does not. Instead use the scripts provided in
the resources/utils directory.

14



unix basics

editors

regex/glob

Practice

Common editors
nano (Open source version of pico).

Advantages:
user-friendly. Lists commands at bottom of
screen.
small

Disadvantages:
Not very powerful
Not a default install on many UNIXes

vi Two-mode editor. This is my editor of choice.
advantages:

emacs Editor of choice for many programmers.
Swiss-army knife of editors.

15



unix basics

editors

regex/glob

Practice

Common editors
nano (Open source version of pico).

Advantages:
vi Two-mode editor. This is my editor of choice.

advantages:
small (in size and memory usage)
common (found on almost all UNIX
systems by default)
powerful (great regular expression support,
and nice syntax highlighting)
fast (your fingers never have to leave the
home row. No mouse required)

Disadvantages:
steep learning curve

emacs Editor of choice for many programmers.
Swiss-army knife of editors.

15



unix basics

editors

regex/glob

Practice

Common editors
nano (Open source version of pico).

Advantages:
vi Two-mode editor. This is my editor of choice.

advantages:
emacs Editor of choice for many programmers.

Swiss-army knife of editors. Advantages:
Great syntax highlighting
Single mode editor
Includes all sorts of tools (news readers,
e-mail readers, version control interfaces,
friendfeed interface)

Disadvantages:
Uses lots of memory
Not a default install on many UNIXes

15



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Globs (Wildcards)

Definition
Globs (wildcards) can be used by BASH, and by other
programs (Microsoft Word & Excel) as shortcuts to
match multiple expressions

* Match zero or more characters.
? Match any single character

[...] Match any single character from the bracketed
set. A range of characters can be specified with
[ - ]

[!...] Match any single character NOT in the
bracketed set.

{a,b,...} A list (set)

16



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Globs (Wildcards)

N.B.
An initial "." in a filename does not match a
wildcard unless explicitly given in the pattern. In
this sense filenames starting with "." are hidden. A
"." elsewhere in the filename is not special.
Pattern operators can be combined

Example
chapter[1-5].* could match chapter1.tex, chapter4.tex,
chapter5.tex.old. It would not match chapter10.tex or
chapter1

17



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Using globs in BASH

Example
Delete all microsoft word documents in my home
directory
rm -f ~/*.doc

Example
Convert all microsoft word documents in my home
directory to plain text
for file in ~/*.doc; do antiword $file `basename

$file .doc`.txt; done

Example
Create all files a-c with extensions txt,tmp,foo,bar
touch {a,b,c}.{txt,tmp,foo,bar}

18



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Practice using globs in BASH
Download l55practiceFiles.tar.gz and untar it

1 Move all files ending in .txt to a new directory txt
mkdir txt; mv *.txt txt

2 Copy files 10-19 to a new directory 10-19
mkdir 10-19; cp 1[0-9] 10-19

3 list permissions for files ending in .txt which do not
contain numbers
ls -l [a-zA-Z].txt

OR
ls -l [!0-9].txt

4 Separate files into different directories according to
their extension
mkdir {tmp,foo,bar,txt}

for file in *.{tmp,txt,foo,bar}; do mv $file

`echo $file| cut -f 2 -d '.'` /$file; done
19



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Regular expressions
Finding the information you need from the
databases will require the use of regular expressions
Regular expressions are a feature in many
programming languages that allow one to search for
a given string in a body of text, including the use of
some special characters
Problem: I want to find all CVC words in the
English CELEX database
Solution: grep -E '\\\[CVC\]\\' celex.cd

Problem: I want to know how many words that start
and end with the letter k
Solution: grep -iEc '\\k[a-z]*k\\' celex.cd

20



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

character classes and anything
Special characters: . ? + * [] {} () | ^ $ \

. matches any character
[] matches any of the characters within the

brackets e.g. [a0] matches both a and 0

Several predefined shortcuts are also possible
[a-z] matches all lowercase letters
[A-Z] matches all uppercase letters

[a-zA-Z] matches all uppercase and lowercase letters
[0-9] matches all numbers

21



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Quantifiers
Special characters: . ? + * [] {} () | ^ $ \

? matches 1 or 0 of the preceding character, e.g.
colou?r matches color and colour

+ matches 1 or more of the preceding character, e.g.
bug +off matches bug off, bug off, but not bugoff

* matches any number of the preceding character, e.g.
colou*r matches color, colour, colouur and so on

{} used to specify the number of times a character
should be matched. Ranges are also possible.

Example
a{2} matches only aa

[a-z]{2} matches two lowercase letters, e.g. ab
[a-z]{2,4} matches 2–4 lowercase letters, e.g. al or

foo
22



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Greediness
Special characters: . ? + * [] {} () | ^ $ \

Definition
By default, * and + are greedy, meaning that they match
as much as possible. Often this is not the intended
effect.

Example
I want to strip out html tags from a document. I use the
following regular expression: <.*> This will match
<span class=’foo’>. But it will also match <span

class=’foo’>some text I don’t want to get rid

of</span>

Solution: use negative character classes: <[^<>]*>
In Perl and python, you can use .*? and .+?

23



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Grouping
Special characters: . ? + * [] {} () | ^ $ \

() used to group sequences. Useful especially for
backreferences (more on that later), and
| used as an or operator, e.g. x|y matches either x or
y

Example
(m|M)(in|ax)imum matches minimum, maximum,
Minimum and Maximum

24



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Backreferences

Special characters:
. ? + * [] {} () | ^ $ \

Definition
\1 is a backreference. You can use multiple
backreferences of the form \n where n is the nth pair of
parentheses in the expression.

Example
Say I want to find common typos involving duplicate
words (such as a a or the the). I could write an
expression like so (a|the) \1

which says “match either a or the followed by a space
followed by whatever was matched in the parentheses”

25



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

The beginning, the end, and escaping
Special characters: . ? + * [] {} () | ^ $ \

ˆ matches the beginning of the string
Within brackets, negates the pattern, e.g. [^xy]
matches everything but x or y

$ matches the end of the string
\ is the escape character. When you want to use

one of the special characters as a normal
character, it must be preceded by \

26



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Grep specific information
grep will search a file on a line by line basis, and
return any lines which contain the regular expression
In the case of CELEX, we will take advantage of the
fact that fields are separated by\

27



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Grep options
Like many UNIX programs, grep has quite a few
options available. For a complete list, type man grep

-E extended regular expressions — allows us to use
all the special characters
-i ignore case
-c simply print the number of matches
-v invert match, i.e. return everything that does not
match the expression

These can be used in conjunction with one another, e.g.
grep -icv ’dog’ file

returns the number of lines that do not contain the word
dog from the file ‘file’.

28



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Regular Expression practice
Practice writing some regular expressions that will find
the following from CELEX:

all words begin with ‘st’
\\st

all words that end in ‘ing’
ing\\

word that begin with ‘st’ and ending with ‘ing’
\\st[a-z]*ing\\

all monosyllabic words
\\\[[CV]+\]\\

all disyllabic words
\\\[[CV]+\]\[[CV]+\]\\

Find all words with a frequency of greater than 23

29



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Substitution

Definition
Not only can you use regular expressions to match
strings, but you can also replace matched strings with
other strings. The easiest way to do this is with the
program sed. By default, sed prints out the entire
input, replacing any patterns with the specified
replacements The basic form is like so:
sed 's/match/replace/flags' < infile > outfile

Example
Input: The blue man sat next to the green man.
echo 'The blue man sat next to the green man.' |

sed 's/man/woman/g'

Output: The blue woman sat next to the green woman.
30



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

Backreferences in replacements

Definition
Backreferences can be used not only in patterns, but
also in replacements. This allows one to use dynamic
replacements.

Example
File replacement: I want to get rid of spaces in
filenames, because they can cause problems with UNIX
scripts. I can use sed.
mv "foo bar.txt" foo_bar.txt

for file in *; do mv "$file" `echo $file|sed -E 's/

/_/g'`; done

31



unix basics

editors

regex/glob
globs

regular expressions

grep

sed

Practice

More transformations
\l Makes the following character lower case
\u Makes the following character upper case
\L Makes all following characters lower case
\U Makes all following characters upper case

Example
echo "Minimum"|sed -r 's/(in|ax)imum/\u\1/'

OR

echo "Minimum"|perl -pe 's/(in|ax)imum/\u\1/'

32



unix basics

editors

regex/glob

Practice

Practice (1)
1 Display the second column of courseBackground.txt

cut -f2 courseBackground.txt

2 Create a new file with only the first and third
columns of courseBackground.txt
cut -f1,3 courseBackground.txt >

courseBackground13.txt

3 Combine the courseBackground.txt with the new
file you just created
paste courseBackground.txt courseBackground13.txt

> combinedFile.txt

4 Sort the courseBackground.txt file by nickname,
ignoring case (HINT: use -t $'\t')
sort -k 2,2f -t $'\t' courseBackground.txt

33



unix basics

editors

regex/glob

Practice

Practice (2)
1 Count the number of entries in the Devil’s

Dictionary
grep -Ec 'ˆ[A-Z]{2,},' devilsDictionary.txt

2 Print out the all the entries in the Devil’s dictionary
(not the definition)
grep -E 'ˆ[A-Z]{2,},' devilsDictionary.txt | cut

-f1 -d ’,’

3 Count the number of occurrences of the word the in
the Devil’s Dictionary
grep -Eic '( |[ˆa-z]|ˆ)the([ˆa-z]|$)'

devilsDictionary.txt

4 Count the number of indefinite articles in the Devil’s
Dictionary
grep -Eic '( |[ˆa-z]|ˆ)(a|an)( |[ˆa-z] |$)'

devilsDictionary.txt
34



unix basics

editors

regex/glob

Practice

Practice (2) details
1 Count the number of entries in the Devil’s

Dictionary
grep -Ec 'ˆ[A-Z]{2,},' devilsDictionary.txt

Each entry starts with a word in all caps, at the
beginning of a line, following by a comma.

2 Print out the all the entries in the Devil’s dictionary
(not the definition)
grep -E 'ˆ[A-Z]{2,},' devilsDictionary.txt | cut

-f1 -d ’,’

I use the same regular expression as in the preceding
example, but instead of using the -c option to count
the number of words, I print them to standout out,
then I use the cut command to only print the entry
(which ends in a comma).

35



unix basics

editors

regex/glob

Practice

Practice (2) details
4 Count the number of occurrences of the word the in

the Devil’s Dictionary
grep -Eic '( |[ˆa-z]|ˆ)the([ˆa-z]|$)'

devilsDictionary.txt

Let’s think of this regular expression in steps.
We could start of with simply 'the'. But this will
include words like theater

'the[a− z].Thisexcludeswordsliketheater,but
5 Count the number of indefinite articles in the Devil’s

Dictionary
grep -Eic '( |[ˆa-z]|ˆ)(a|an)( |[ˆa-z] |$)'

devilsDictionary.txt

This is basically the same as finding the, except we
need to search for either a or an.

36


	More unix basics
	network tools
	Process management
	Archiving and compressing
	Calculator
	Customizing your environment
	basic scripting
	line endings

	Common Editors
	Globs and Regular Expressions
	Globs (Wildcards)
	regular expressions
	grep
	sed

	Practice

