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Introduction

A major debate in the field of lexical access has been the treatment of morphology.
Two classes of models can be defined in this regard – associative models (e.g. TRACE,
MERGE), which posit that words are stored whole in the lexicon, and combinatorial
models, which claim that morphemes are stored separately inthe lexicon and combined
during lexical access (e.g. Clahsen et al. 2001; Taft and Forster 1975; Taft 1988). This
study seeks to investigate both phonetic and morphologicaleffects simultaneously, by
using an auditorily-based task, with stimuli that have beenchosen with both morphol-
ogy and phonetics in mind. We hypothesize that effects of morphology such as those
found in previous studies using visual-based tasks will also be found using a speech-in-
noise task, providing support for a combinatorial model of lexical access.

Research Questions
• Determine the extent to which morphological complexity affects language com-

prehension

• Compare context effects to previous results from speech-in-noise tasks

• Determine to what degree context effects in spoken word recognition apply across
languages

Method
Materials The two stimulus sets (one German and one English ) consistedof 150
nonwords and 150 words (half monomorphemic and half bimorphemic). All stim-
uli were of the form CVCCVC (where V includes short and long vowels as well as
diphthongs), with stress on the first syllable. CVCCVC tokens were chosen because
they are fairly common in both English and German, and they include both monomor-
phemes and bimorphemes. Word stimuli were selected from theCELEX (Baayen and
Rijn 1993) database. Nonword stimuli were based upon the word stimuli such that the
two sets were fairly phonemically balanced.

Several lexicostatistical measures were computed for eachstimulus. For nonwords,
two measures of phonotactic probability were calculated based on the method of Vite-
vitch and Luce (2004). For the words, two log-10 based frequency measures, (one
based on word forms; the other based on lemmas), was computedfollowing the method
of Newman et al. (1997, 875, footnote 1). Two measures of neighborhood density were
also calculated for the words — a phonological one, in which all words with an edit
distance of 1 are treated as neighbors, e.g.pat has neighborspet andrat, and a phonetic
measure was also calculated, based on the confusion matrices from the nonword data.
The phonetic measure treatspet as a closer neighbor topat thanrat, given that[æ] and
[E] are more highly confusable than[ô] and[p]

Participants 30 subjects were recruited from the University of Michigan for the En-
glish experiment. 32 subjects from the University of Konstanz, Germany, were recruited
for the German experiment. All subjects reported no known hearing deficiencies.

Task Subjects listened to the recorded materials over headphones and typed in what
they heard using standard orthography. Signal dependent noise was added to the stimuli
according to the method described by Schroeder (1968).
Analysis The data was analyzed using the j-factor model of Boothroyd and Nittrouer
(1988). The j-factor model assumes that phonemes are the basic unit of speech, and
that phonemes are perceived independently (which has been shown to hold true most
of the time; see Fletcher (1953); Allen (1994)). The probability of correctly identifying
a given word (or nonword) can be calculated as the product of the probabilities of its
constituent phonemes.

pw = pC1pV1pC2pC3pV2pC4 (1)

wherepw is the probability of correctly identifying a word (or nonword). Assuming
that phonemes are perceived independently, (1) can be rewritten as:

pw = p j
p (2)

where j is the number of phonemes, andpp is the geometric mean of the probabilities of
each constituent phoneme. Rewriting (2), the quantity j canbe empirically determined
from confusion matrices by:

j =
log(pw)

log(pp)
(3)

Predictions
jnonword ≈ 6

jnonword > jword

jword ∝
1

frequency

jword ∝ density



























These predictions based on Benkı́ (2003) and Boothroyd
and Nittrouer (1988). Sincej can be thought of as the num-
ber of independent units in a word, the facilatatory effect
of higher lexical frequency should result in a lowerj, while
the competitive effect of a dense neighborhood should re-
sulted in a higherj.

jbi > jmono
} This predicts that additional morphemes will add to the

overall number of independent units of the word.
Results

The basic results are shown in Figures 1 through 4. Figures 1 and 2 provide subjects
analyses, while figures 3 and 4 provide items analyses. The predicted differences be-
tween words and nonwords was robust in both the English and German data, as shown
in figures 1 and 2.
Morphological Results Initially, there seems to be a discrepancy between the En-
glish and German data in terms of morphological effects on spoken word recogni-
tion. While there is a significant difference between monomorphemic and bimorphemic
words in English, there is not in German. However, upon further inspection, it was
found that the results from English are in fact misleading. It happened to be that the
monomorphemic English words had a significantly higher lexical frequency than the bi-
morphemic English words, while the German materials had no such difference. To con-
trol for frequency, a subset of 65 English word stimuli (33 mono- and 32 bimorphemes)
which were balanced for frequency was analyzed, and no significant difference was
found. Also, in order to check statistical power, a random subset of 64 English words
which differed in lexical frequency was also analyzed, and asignificant difference was
found. These results are shown in figures 5 and 6.
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Figure 1: English J-Factor results - Each plot compares two subsets of results from the subject
analysis. Curves representy = x j. The second row of plots only shows nonword results, while
the final two rows only display word results. P-values given are from 2-sample t-tests; before
computing the statistics, all points lying in the floor or ceiling ranges (> .95 or < .05) were
removed, but are still shown on the plot.
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Figure 2: German J-Factor results - Each plot compares two subsets of results from the subject
analysis. Curves representy = x j. The second row of plots only shows nonword results, while
the final two rows only display word results. P-values given are from 2-sample t-tests; before
computing the statistics, all points lying in the floor or ceiling ranges (> .95 or < .05) were
removed, but are still shown on the plot.2
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Figure 3: English J-Factor regression analyses. Each panel plots j-factor as a function of one
particular lexicostatistical measure. Each point represents one item. Thetop 6 panels show only
word items, while the bottom two show only nonword items. The statistics given are from linear
regressions.
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Figure 4: German J-Factor regression analyses. Each panel plots j-factor as afunction of one
particular lexicostatistical measure. Each point represents one item. Thetop 6 panels show only
word items, while the bottom two show only nonword items. The statistics given are from linear
regressions.
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sis using a subset of the data matched for lexi-
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dom subset of the data in which the lexical
frequency imbalance of the whole set was re-
flected.

Discussion
Context Effects Once controlled for other factors such as frequency, no significant
difference was found between monomorphemes and bimorphemes in the subjects anal-
ysis. It should be noted however, that in the items analysis,j was more highly correlated
with the lemma log frequency than the word form frequency, suggesting that perhaps
morphemes are stored separately in the lexicon as Combinatorial Models suggest. It
is certainly apparent that morphology has a relatively small effect on word recognition
compared to other context effects such as frequency and neighborhood density.
Cross-language comparison The effect of lexical status was very clear for both
the English and German experiments. The finding in English ofjnonword ≈ 5.38 is
fairly consistent with the predictions, and with prior research using CVC nonwords
(e.g. Benḱı 2003; Boothroyd and Nittrouer 1988)

The finding of j ≈ 4.25 for German nonwords is substantially lower than predicted.
One possible explanation for this could be that the German nonwords were more word-
like than the English nonwords. According to the measures ofphonotactic probability
used, this is not the case, as the German nonword stimuli havecomparable or slightly
lower phonotactic probability scores than the English stimuli.

The result ofjword ≈ 3.05 for both the German and English data provide a new find-
ing for the field. Previous research (Boothroyd and Nittrouer 1988; Benḱı 2003; Olsen
et al. 1997) using CVC stimuli foundjword ≈ 2.5. Bases on these results, one might ex-
pect jword for CVCCVC stimuli to be approximately double that. It is clearly apparent
however, thatjword does not scale linearly with word length.

One strikingly unexpected result is the positive correlation between lexical fre-
quency andj for the German data — the opposite of the predicted result (and oppo-
site from the English data). It appears that this effect is infact due to a correlation
(r = .3594, p < .0001) between phonetic neighborhood density and lexical frequency
in the German data. Thus it seems that the effect of neighborhood density is over-
shadowing the effect (if any) of lexical frequency. This is in part consistent with Benkı́

(2003), who found neighborhood density to be a much strongerpredictor of recognition
than lexical frequency.
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